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Abstract

Pump-and-dump (P&D) schemes pose an ongoing threat within de-
centralized exchanges (DEXs), where anonymity, minimal regulation, and
continuous on-chain transaction flows enable rapid market manipulation.
Traditional detection methods—ranging from simple threshold alarms to
deep learning architectures—often become unreliable in DEX environ-
ments lacking unified order-book data and containing high-volatility or
sparse trading pairs. In this paper, we introduce a novel graph neural
network (GNN) approach for timely detection of pump-and-dump manip-
ulation. Our framework constructs a dynamic transaction graph repre-
senting wallets, smart contracts, and liquidity pools, then learns contex-
tual embeddings that reveal transient patterns of coordinated buying and
selling. Through extensive experiments on real-world DEX data, we show
that our GNN model outperforms baseline solutions (e.g., threshold-based
heuristics, random forests, and feed-forward neural networks), achieving
higher F1 scores and a lower rate of false alerts. Moreover, by leveraging
on-chain features and topological structures, our method remains robust
to short-lived pump spikes and low-liquidity tokens, which often confound
simpler detectors. We further discuss system design considerations—such
as rapid updates of node features and address merge heuristics—to ac-
commodate large-scale, time-sensitive scenarios. These findings highlight
the potential of GNNs for improving the security and transparency of de-
centralized trading ecosystems, paving the way for multi-chain extensions
and advanced streaming inference strategies.

1 Introduction

1.1 Motivation

Cryptocurrency markets have witnessed a surge in pump-and-dump (P&D)
schemes, particularly among smaller and less liquid tokens. While central-
ized exchanges (CEXs) have introduced some safeguards against these manip-
ulations, decentralized exchanges (DEXs) present a novel challenge: minimal
regulation, anonymity of participants, and direct on-chain transactions enable



malicious actors to orchestrate P&D events with relative impunity. Moreover,
because DEX trades occur fully on-chain, prompt detection is essential to pre-
vent cascading losses and safeguard investors’ assets in real time.

Despite broader research interest in crypto fraud detection (e.g., threshold-
based analytics by [18], machine learning pipelines used in [5], and deep-learning
methods explored by [7]), a persistent gap remains. Existing methods often rely
extensively on off-chain signals—such as centralized order-book depth—or re-
quire large labeled datasets not readily available in permissionless blockchain
ecosystems. Consequently, there is a pressing need for on-chain, graph-based
detection pipelines that can capture and model evolving market structures with-
out depending on centralized data sources.

1.2 Problem Statement

Detecting on-chain P&D schemes is uniquely challenging because the entire
transaction ecosystem unfolds directly on decentralized networks, which often
embrace pseudonymity and have fragmented liquidity across multiple DEXs.
The lack of unified order-book data and the high velocity of trades further
complicate conventional anomaly detection:

e On-Chain Complexity: Transactions, wallet interactions, and liquidity
pools form intricate network topologies that change continuously.

e Insufficient Off-Chain Signals: Traditional approaches are optimized
for centralized markets (e.g., using exchange-supplied order-book data).
Such methods cannot fully utilize the rich on-chain transaction graphs.

e Scalability Concerns: DEX-based assets can see thousands of transac-
tions in minutes, stressing any detection system that lacks efficient graph-
based processing.

These factors underscore the necessity of a specialized framework that can
(i) represent evolving transaction networks as graphs, (ii) embed their complex
structural properties, and (iii) detect manipulative activity in real time.

1.3 Contributions

In this work, we propose a novel Graph Neural Network (GNN) pipeline for on-
chain pump-and-dump detection across decentralized exchanges. Specifically:

1. GNN for On-Chain DEX Data: We develop a pipeline that con-
structs dynamic transaction graphs from raw blockchain data and then
applies node- and subgraph-level embeddings to identify suspected P&D
coordinations.

2. Improved Detection Metrics: Through extensive experiments, we
demonstrate how our GNN approach outperforms baseline thresholding
methods [18] and classical machine learning schemes [5]—as well as more
recent deep-learning frameworks [7]—in terms of recall and precision.



3. Adaptation of Prior Work: We integrate ideas from prior threshold-
based, anomaly-oriented studies and adapt them into our newly proposed
graph-based methodology. In doing so, we build upon and extend the
foundations laid by related crypto market manipulation research to a de-
centralized, on-chain setting.

Overall, our framework addresses the unique challenges posed by decentral-
ized exchanges and directly captures the relational structure among traders,
liquidity pools, and contracts. In the following sections, we detail the model
design, data preprocessing, evaluation metrics, and results that collectively il-
lustrate the efficacy of a GNN-driven approach in detecting P&D schemes in
real time.

2 Background and Related Work

2.1 Pump-and-Dump Schemes in Crypto

Pump-and-dump (P&D) schemes exploit the speculative nature of cryptocur-
rency investors by artificially inflating an asset’s price (the pump) and rapidly
selling off once a profit threshold is reached (the dump). This process often
entails three main phases [8l[15}|16}[20L21}[30]:

1. Accumulation: Insiders quietly accumulate a target token, typically one
with low liquidity to maximize price impact later.

2. Pump: A coordinated promotional campaign—via social media, Tele-
gram groups, or Discord channels—fuels buying pressure, spiking prices.

3. Dump: Once a peak is reached, the orchestrators sell en masse, causing
a rapid price collapse.

While early studies leveraged threshold-based heuristics (e.g., abnormal vol-
ume or price spikes) to detect P&D events [17,[18], these approaches often fail
to capture more subtle manipulations. In traditional centralized exchanges
(CEXs), some level of order-book transparency and stricter compliance can re-
duce P&D frequency [5]. Conversely, decentralized exchanges (DEXSs) introduce
anonymity and on-chain mechanics that complicate detection. This discrepancy
underpins an urgent need for more nuanced, on-chain detection models specifi-
cally tuned to decentralized markets.

2.2 On-Chain vs. Off-Chain Data Sources

CEX vs. DEX Data Differences: Centralized exchanges such as Binance
and Coinbase typically maintain internal order books and enforce Know-Your-
Customer (KYC) processes. This data is often partially available through APIs,
giving insights into trade volume, timestamps, and user statistics—though user
identity is often masked. In contrast, all transactions on a decentralized ex-
change appear as on-chain events, which can reveal richer relational patterns



among addresses, liquidity pools, and smart contracts [4|7]. However, because
DEXSs operate under weaker regulatory constraints—e.g., no KYC—you lose
unequivocal identity data.

Importance of On-Chain Analytics: On-chain analytics ensures that
malicious or wash trading patterns are not overlooked by off-chain recordkeep-
ing. It captures wallet-to-wallet transfers, contract interactions, and liquidity
changes, all of which are critical for real-time manipulation detection in DEX
ecosystems. Prior works have shown that threshold-based detection mechanisms
are prone to false positives in these environments due to higher volatility and
unpredictable token listings [18].

2.3 Traditional Approaches to P&D Detection

Existing methods for detecting pump-and-dump schemes span a wide spectrum:

Thresholding Approaches. Early research focused on simple statistical trig-
gers—e.g., price or volume spikes crossing fixed thresholds |164{17]. Despite be-
ing straightforward to implement, these methods struggle with high-volatility
or illiquid markets, where many genuine price swings can appear pump-like.

Statistical and Machine-Learning Pipelines. Later studies leveraged so-
phisticated features—such as exponentially weighted moving averages (EWMA),
rolling standard deviations, and outlier analysis—to reduce false positives [1§].
Classical machine-learning methods (e.g., random forests) incorporate these fea-
tures for classification, achieving stronger performance on moderate-volatility
datasets [20].

Deep Learning Solutions. More recent work uses advanced neural archi-
tectures, including LSTMs and Transformers, to model complex temporal pat-
terns indicative of price manipulation [7]. By capturing non-linear dynam-
ics and multi-scale dependencies, experiments demonstrate improved detection
over thresholding. However, these methods frequently rely on centralized data
sources (such as order-book snapshots) and remain underexplored in purely on-
chain contexts.

2.4 Graph-Based Approaches and GNNs

GNNs for Financial Anomaly Detection: Graph Neural Networks (GNNs)
have shown strong potential in various fraud detection tasks (e.g., credit-card or
e-commerce anomalies). Their advantage lies in modeling relationships between
entities (nodes) and transactions (edges) in ways that traditional vector-based
approaches cannot [3].

Suitability for Transaction Networks. In a decentralized exchange or
on-chain environment, each wallet, pool, or contract address is naturally repre-
sented as a node, and transfers or contract calls become edges. This structure
enables GNNs to:



e Exploit local connectivity and subgraph motifs to detect coordinated buys
or sells.

e Model temporal or sequential patterns by augmenting edges with time-
based features.

e Propagate information across the network, identifying suspicious commu-
nities or clusters of addresses pumping the same token [41[10].

By integrating GNN-based representations with real-time on-chain data, our
approach aims to uncover hidden relationships driving P&D schemes—where
existing thresholding or purely machine-learning pipelines often fail.

3 Proposed Framework

3.1 Graph Construction

We construct a transaction-based graph to capture the relationships among
users, token contracts, and relevant DEX addresses [4}7]. Formally, let

G=(V,E),

where V is the set of nodes and F is the set of edges.

Node Definition. We consider three main types of nodes, though in practice
more specialized node categories can be used as well:

1. User Addresses: Unique wallet addresses that participate in transac-
tions.

2. Smart Contracts: Deployed contracts (e.g., token contracts) relevant to
the DEX environment.

3. Token-Pair Addresses: Liquidity pool addresses or DEX-pair addresses
where swaps occur.

Edge Definition. Edges in the graph represent interactions or “flows” of
tokens between the nodes. These include:

e Direct Transfers: Token movements from user to user (or contract).

e Liquidity Provisions: Deposits and withdrawals of assets into a liquidity
pool.

e Swaps/Trades: Exchange actions that convert one token to another,
typically via an Automated Market Maker (AMM).

An edge e;; € E exists if node v; interacts with node v;. Associated with each
edge are time-series transaction data (e.g., amount, price, timestamp).



Node and Edge Features. Each node v stores features capturing:

Transaction counts: The total number of trades/transfers over a chosen
time window.

Holding volumes: The accumulated amount of a given token or a basket
of tokens.

Temporal statistics (time-based): Average volume or holding changes

over hourly/daily intervals.

For edges, we track:

e Transaction amounts: Token quantities in each edge interaction.
e Token price movements: Price at the time of trade or swap.
e Timestamps and intervals: Used to model temporal dynamics or se-

3.2

quences of transfers [18].

GNN Architecture

The choice of GNN model is crucial for effectively navigating the graph-structured
data. Common GNN variants include:

e Graph Convolutional Network (GCN): Operates in the spectral or

spatial domain, aggregating features from a node’s neighbors [1219].

e GraphSAGE: Learns aggregation functions (mean, LSTM-based, pool-

ing) to handle inductive settings, i.e., new nodes not seen during train-
ing [11].

e Graph Attention Network (GAT): Employs attention weights to adap-

tively weigh neighbor contributions during aggregation [27].

Temporal Integration. Since pump-and-dump behavior evolves over time,
we incorporate temporal dynamics using either:

1.

Dynamic Graph Approach: Model adjacency changes in discrete time
steps, applying GNN layers on snapshot subgraphs or with time-aware
adjacency matrices.

Time-Series Transformations: Concatenate time-lagged features (price,
volume) in feature vectors, enabling the GNN to capture short-term price-
volume spikes.

Feature Embeddings. For each node v, we define an embedding vector hq(JO)
initialized from raw features:

h(?) = [price_history, volume_stats, trade_freq, . . .].

During each GNN layer, these embeddings are updated via an aggregation func-

tion:

B = o(W® . AGG({R ™) su e N(v)})),



where o(-) is a non-linear activation and W) are trainable weights for layer
k. The function AGG(-) can be a simple mean, attention-based weighting, or
pooling operator [3].

3.3 Detection Module

Our detection workflow (Figure (1) can be summarized in three main steps:

Step 1: Build Transaction Graph. Incoming on-chain data is parsed to
update G:

V + V U {new addresses, pools},
E + E U {new token transfers, swaps}.

Associated node/edge features (e.g., volume, price) are also updated.

Step 2: GNN Embedding. A GNN infers latent representations for each
node or subgraph region. This step condenses raw price-volume signals into a
multi-dimensional representation, capturing local patterns such as:

e Rapid accumulations around certain addresses,
e Dense connections among suspicious addresses,
e Abrupt trading-volume bursts for specific token pools.

Step 3: Classify Suspicious Nodes or Time Windows. Using the learned
embeddings, we score or label suspicious addresses and periods. Two broad
options exist:

1. Threshold-Based Anomaly Scoring: Compute an anomaly score (e.g.,
distance from historical embedding distributions). If S (hgk)) > 7, flag the
node/time-window as “pump-like.”

2. Supervised Classification: Given partial labeled events (pump vs. nor-
mal) from known P&D episodes, train a classifier (e.g., multi-layer per-
ceptron) on node embeddings [4}/7].

In practice, anomaly scoring is well-suited to real-time pipeline deployment
where labeled data is scarce, while supervised classification can boost precision
if a sufficiently large labeled set is available.

3.4 Comparison with Traditional Methods
To benchmark the proposed GNN-based approach, we compare against:

e Volume/Price Thresholding: A parallel module implements basic rule-
based thresholds (e.g., 300% price jump over a short window). While
easily deployed, it suffers from high false positives in highly volatile tokens
[17118].
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Figure 1: Conceptual flow of the proposed GNN-based detection pipeline. On-chain data
updates the graph G. A chosen GNN aggregates node/edge features to produce embeddings,
enabling downstream anomaly detection or classification.

e Short-Term User Behavior: Traditional approaches often track ephemeral
big-volume traders—identifying abrupt participation from previously dor-
mant addresses. Although useful, these heuristics fail to capture broader
network signals (e.g., multiple addresses collaborating).

e Deep-Learning Classification: Methods like CNN or LSTM on raw
time-series metrics [7] can identify suspicious intervals but overlook the
relational dimension. Coupling these with GNN embeddings can further
enrich the detection performance.

By complementing threshold-based logic with GNN'’s relational embedding,
we capture more nuanced coordination among addresses, significantly reducing
false positives. As prior works note, purely local price-volume changes are insuf-
ficient to confirm pump events without “who is trading” context [16,20]. There-
fore, the proposed framework merges dynamic graph analytics with advanced
node-level embeddings, delivering a more robust pump-and-dump detection ar-
chitecture.

4 Data Collection and Preprocessing

4.1 Sources of On-Chain Data

We gather token and transaction data directly from multiple on-chain and off-
chain services. The data comprises trades, transfer logs, and liquidity record
snapshots. Three primary sources are used:

Blockchain Explorers. Platforms like Etherscan and BSCScan provide raw
transaction details, including sender /receiver addresses, token amounts, gas fees,
and timestamps [2/6]. Explorers facilitate searching and filtering at block or
transaction levels. By querying large swaths of blocks (e.g., the previous 3-
6 months), one can reconstruct user activity and token flows on the relevant
chain (Ethereum or BNB Smart Chain).



DEX Aggregator APIs. For DEXs like Uniswap or PancakeSwap, aggrega-
tor services or public APIs offer structured endpoints:

e Aggregated order books (price, liquidity).
e Swap history for popular or newly listed tokens.
e Time-series data (OHLCV: open, high, low, close, volume).

These APIs inherently reduce noise by grouping fine-grained transaction data
into epoch intervals (e.g., 5, 15 minutes), supporting volume and price analytics
[18].

Filtering Low-Liquidity Tokens. Pump-and-dump schemes often target re-
cently launched or thinly traded assets. We adopt volume-based and listing-age
thresholds:

Volumegajly < 8 A Token Age < v,

where 8 and v are user-defined cutoffs (e.g., 50,000 USD daily volume, listed for
under 30 days). This curated subset focuses on suspicious or at-risk tokens [16].

4.2 Data Cleaning

Raw blockchain data can be replete with artifacts, pseudo-transactions, and
incomplete logs. Several cleaning and normalization steps are performed:

Removing Spam or Dust Transactions. Many addresses generate “dust”
transfers with minimal token amounts for promotional or test activity [12]. We
establish a token-specific minimal value threshold (e.g., 1USD) to filter out
negligible records:

TransactionValue(t) > 4.

Identifying Cyclical Liquidity Injections. Pump actors often inject and
remove liquidity in repeated cycles before a coordinated pump [4]. We scan for
repetitive liquidity add/remove patterns on DEX pools. If a pool’s liquidity
changes by (40% in short intervals more than n times per day, it is flagged for
suspicious patterns.

Merging Addresses or Labeling Exchange Contracts. Since some pump
coordinators spread assets across multiple addresses, we merge addresses known
to belong to the same entity (e.g., exchange hot-wallet clusters) [9]. Exchange
deposit addresses are labeled to avoid falsely flagging large exchange movements
as malicious. Similarly, bridging contracts or official liquidity addresses are
marked to reduce confusion.

4.3 Labeling Strategies

Ground-truth labels for pump-and-dump events are crucial for supervised or
semi-supervised model training. We employ the following strategies:



Known P&D Events from Telegram Groups. Public Telegram chan-
nels regularly publish prospective pump tokens and timing [20]. We scrape
these announcements, match associated token pairs (e.g., SELL/BUY pairs),
and cross-check on-chain data near the declared pump window (e.g., £1 day).

Cross-Referencing External Announcements or Threshold Detections.
We also use third-party data from social media or crypto news aggregators:

e FEaxternal Calls: Some websites publish alerts whenever a token’s price
surges beyond some threshold. We triangulate these with on-chain data
to confirm if an event meets P&D characteristics (steep price rise, followed
rapidly by a crash).

e Unsupervised Flags: Methods like volume-price thresholding [16/17] high-
light potential “burst” intervals, which we then manually verify.

Time Windows: Capturing Accumulation and Short-Lived Pumps.
We annotate intervals spanning:

1. Accumulation Phase: Gradual inflows into a token over days/weeks.
Some addresses accumulate a large share.

2. Pump Window: An abrupt price hike spanning minutes or hours (de-
pending on the market liquidity).

3. Dump Phase: The subsequent rapid sell-off phase causing the token’s
price crash.

By explicitly labeling these segments, we enable models to detect not just the
final pump spike, but also precursor signals (e.g., stealthy accumulation). Time-
labeled data also helps evaluate false positives in normal “volatile” markets vs.
orchestrated pump events.

5 Experimental Setup

5.1 GNN Implementation Details

We implement our graph neural network (GNN) within a PyTorch-based frame-
work, using an open-source extension for relational data such as PyTorch Geo-
metric [11]. Key hyperparameters and design choices include:

Learning Rate. We adopt an initial learning rate of 103, chosen after grid-
searching in {1072,1073,107%}. A cosine annealing schedule further decays the
learning rate to 10~° by the final epochs [28].

Hidden Layer Sizes. Ineach GNN layer, hidden representations have dimen-
sions of 64 or 128, depending on the complexity of the aggregator. We found a
consistent hidden size of 128 to provide stable performance on mid-sized graph
datasets [19)].
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Number of GNN Layers. We stack two or three graph convolutional layers,
similar to the practice in [27], balancing model capacity and oversmoothing
considerations. In initial tests, deeper GNNs (;3 layers) did not notably improve
F1 performance.

Aggregator Functions. We evaluate mean, max, and attention-based aggre-
gators [22]:
h{¥ = AGG({h™Y | ue N()}),

where AGG is the aggregator function. Empirically, mean aggregators were
faster, while attention-based methods slightly improved recall in detecting pump
events.

Training Procedure. We train our GNN in a supervised manner using the
ground truth labels (pump vs. non-pump) from Section Each token is
treated as a graph node with edges signifying correlations or shared liquidity
among tokens. We use a cross-entropy loss: £ = — )" y;log(y;), and run for
up to 100 epochs per dataset. An early stopping criterion with a patience
of 10 halts training if validation F1 stagnates [23]. Python scripts run on a
single NVIDIA RTX GPU, with computations accelerated by CUDA 11.8. Our
codebase utilizes Python 3.10, PyTorch 1.13, and PyTorch Geometric 2.3.

5.2 Evaluation Metrics

We assess detection performance using multiple metrics:

Precision, Recall, and F1 Score. Following [16}[20], we calculate

Precision — TP Recall — TP Pl Precision - Recall
FeasIOn = 35 p N T TP L EN = °" Precision + Recall’

where “TP” is the number of detected true pumps, “FP” is the number of false
alarms, and “FN” is the number of missed pump events.

AUC-ROC. We also report the area under the ROC curve (AUC-ROC) to
quantify the trade-off between true and false positive rates. This measure helps
compare with baselines (e.g., threshold-based methods) that output continuous
anomaly scores [1].

Real-Time Performance Considerations. Beyond accuracy measures, we
evaluate inference latency and throughput. Since timely pump detection may
require sub-second or near-block-time decisions [4], we measure:

o Inference Latency: average time (ms) per forward pass for a batch of nodes.
e Throughput: the number of inference operations per second for full-batch vs.
mini-batch modes.
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5.3 Baselines

We benchmark the proposed GNN approach against three categories of base-
lines:

Threshold-Based Methods. Inspired by [16}/17], we implement a volume-
price spike detection via:

Price; > Price;—,, + - o(Price;_y,),

Volume,; > Volume;_,, + 8 - o(Volume;_, ),

for a window length w. If both conditions satisfy, a pump alert is raised. Thresh-
old parameters a, 3 are tuned for best F1 on validation data.

ML-Based Approaches. We compare to a random forest (RF) following [20]
and a logistic regression (LR) model [|9]. Both use handcrafted features (e.g.,
price standard deviation, volume spikes, etc.) extracted from the time windows.
The RF typically yields strong baseline results for tabular anomaly detection in
crypto markets.

Deep Learning Approach. We also include a purely feed-forward neural
network with multi-layer perceptrons (MLP) as a simpler deep learning baseline
[13]. The MLP is trained on node features (price, on-chain metrics) aggregated
in fixed intervals, ignoring any graph connectivity. Comparisons illustrate the
added benefit of our GNN-based architecture over non-graph deep models.

6 Results and Discussion

6.1 Quantitative Analysis

Comparison of GNN Performance vs. Baseline Methods. Table[I]sum-
marizes the performance of our graph neural network (GNN) model against
three baselines: (i) threshold-based detection [17], (ii) a random forest classifier
(RF) [20], and (iii) a feed-forward neural network (FFN). We report precision,
recall, F1, and AUC-ROC. Across multiple runs and parameter settings, our
GNN consistently outperforms baselines by at least 3-5% in F1 score. Notably,
compared to threshold-based methods, GNN reduces false positives (excessive
triggers) while retaining high recall.

Sensitivity to Token Liquidity and Transaction Volume. We next in-
vestigate how liquidity impacts detection. Empirically, tokens with low market
caps exhibit sparser trade volumes and more frequent zero-activity windows,
which can cause threshold-based or conventional ML methods (e.g., RF) to
misclassify modest spikes as pump signals [16]. In contrast, our GNN aggrega-
tor layers exploit the relational structure (e.g., correlated liquidity across token
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Table 1: Detection performance comparison on DEX datasets.

Method Precision Recall F1 AUC
Threshold (Vol-Price) 0.77 0.62 0.68  0.72
Random Forest 0.84 0.74 0.79 0.81
FFN (MLP) 0.82 0.78 0.80 0.83
Proposed GNN 0.87 0.80 0.83 0.85

pairs) to reduce false positives. For tokens with a daily average volume under
$50K, baseline methods exhibit a 12-18% higher false positive rate relative to
higher-volume tokens, while the GNN experiences an 8% or smaller increase.

Impact of Sampling Window Sizes and Graph Construction. We ex-
amine using short (e.g., 5-minute) vs. longer (e.g., 30-minute) sampling windows
to build static or dynamic graph snapshots [4]. On short windows, baselines
often overreact to ephemeral volatility, causing artificially inflated recalls but
poor precision. GNN results are more robust: adjacency edges capture cross-
token correlations that remain relevant across multiple blocks. Dynamic graph
updates (e.g., merging or splitting nodes based on liquidity changes) slightly
improve recall in low-volume tokens, but at higher computational cost. Overall,
sampling windows in the 10-15 minute range offer a good trade-off between
timeliness and noise tolerance, consistent with prior recommendations [20].

6.2 Qualitative Observations

Case Studies of Detected Pump Events on DEX. We highlight two
pump-and-dump events discovered by our GNN:

e Case 1: Token A excelled in trading pairs with strong cross-chain bridging.
Within a 2-hour interval, the GNN flagged a surge in transaction volume and
correlated price jumps. Our system traced the liquidity inflows from multiple
addresses, showing that a small cluster of addresses orchestrated the pump.

e Case 2: Meme Token B with minimal historical volume. A quick 5-minute
spike triggered a suspicious adjacency signal because multiple pools in the
same liquidity aggregator also saw inbound swaps. Though the raw price
threshold alone might label it “noise,” the GNN recognized repeated patterns
of address cross-transfers.

In both cases, the GNN raised alerts earlier than threshold-based baselines,
suggesting that leveraging address-level relationships provides an advantage in
real-time detection.

Analysis of Misclassifications: False Positives vs. False Negatives.
False positives (FPs) predominantly occur during short-lived hype cycles not
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culminating in abrupt dumps. For instance, community-driven buy sprees
around new NFT partnerships can mimic the volume/price signature of a pump.
Our local smoothing aggregator partially mitigates these illusions, but 5-10%
of such hype bursts are still flagged.

False negatives (FNs) arise due to extremely rapid manipulations where the
entire pump and dump completes in under a few minutes. If data sampling or
subgraph creation lags, the system might miss the momentary peak. We observe
that an adaptive re-sampling of high-volume blocks can reduce FNs, though at
a higher overhead [24].

Effectiveness in Handling Noisy or Highly Variable Token Pairs. To-
kens that experience frequent legitimate spikes (e.g., new Dex aggregator tokens
or yield-farming tokens) pose a challenge. Our GNN architecture can generally
differentiate consistent “organic” growth from flash spikes by focusing on per-
sistent cross-token edges. Nonetheless, if a token naturally exhibits large daily
volatility, the model’s recall can drop. Incorporating rolling volatility features [1]
or per-token normalizing factors helps maintain stable performance.

6.3 Limitations

Model Assumptions about Node Identity or Transaction Patterns.
Our GNN assumes unique node representations for each token, with optional
address-level or liquidity-pool-level nodes. This presumes that address or token
IDs are consistently tracked across time, which may not hold if tokens undergo
frequent re-addressing or bridging [26]. Moreover, a heavy reliance on address
link structures might fail if on-chain mixers or bridging solutions intentionally
obfuscate the flow of funds.

Challenges with Partial Data or Cross-Chain Bridging. Although many
DeFi protocols publicly broadcast transactions, partial data can arise if large
trades happen off-chain or on a sidechain. Missing edges degrade the adjacency
matrix and hamper GNN message passing. Cross-chain bridging events can
also change the underlying token identity (i.e., wrapped tokens) [14]—the GNN
does not automatically know these are the “same” underlying asset. Future
expansions could incorporate cross-chain indexing [9).

Computational Costs with Large-Scale On-Chain Data. The graph
size grows with the number of tokens, liquidity pools, and addresses. While
GNNs can be scaled using neighbor sampling [11], there remains considerable
memory overhead once the network has tens of thousands of nodes. Processing
times might fall short of real-time detection goals unless efficient batching or
streaming is used. Our message passing is currently done on mini-batches of up
to 2,048 nodes to keep GPU requirements in check.
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7 Conclusion

7.1 Summary of Findings

We presented a GNN-based framework to detect pump-and-dump (P&D) ma-
nipulation on decentralized exchanges (DEXs). Empirical evidence shows the
following key observations:

o Effective GNNN-based detection. Our graph neural network approach
outperforms both threshold-based methods |16}/17] and alternative deep-
learning baselines (e.g., random forests or feed-forward networks [20]) in
terms of precision and recall.

e Robustness to noise and short intervals. By leveraging address-
level or token-level interactions, the GNN captures aggregated activity
patterns that mitigate the issue of on-chain noise and extreme volatility.
This approach remains reliable even during short-lived pump intervals that
often elude purely volume-based threshold schemes [14}26].

e Adaptation to volatile transaction data. Unlike threshold baselines
that over-flag ephemeral spikes, the built-in neighborhood aggregation of
GNNs helps distinguish organic volume increases from concerted manip-
ulative behavior.

7.2 Future Directions

While our approach already provides a valuable tool for real-time P&D detection
on DEXs, several promising avenues remain:

Cross-Chain Detection. Crypto assets increasingly bridge across multiple
chains, such as Ethereum, BSC, and Polygon. Future research may unify
transaction graphs from different blockchains [9], building cross-chain adjacency
structures to detect coordinated manipulation. Incorporating bridging or wrap-
ping data can help identify the same underlying asset across heterogeneous DeFi
ecosystems.

Advanced User Behavior Features. Social media and messaging platforms
(e.g., Telegram, Twitter, Discord) are instrumental in coordinating P&D events
[30]. Integrating natural language processing (NLP) signals, sentiment analysis,
or user-influence metrics could strengthen detection by correlating suspicious
on-chain activity with off-chain promotional hype. Fine-tuning large language
models to capture social nuances is a potential next step.

Leveraging Self-Supervised Learning and Anomaly Attention. Adop-
tion of self-supervised graph representation learning could extract richer em-
beddings for rarely-traded tokens or addresses with limited historical data [25].
Additionally, anomaly attention mechanisms—as introduced in the Anomaly
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Transformer [29]—enable modeling both local spikes and global distribution
shifts. Combining such attention modules with graph convolution may further
enhance detection reliability.

Real-Time Monitoring and Alert Systems. In production scenarios, timely
alerts are paramount. A streaming or mini-batch GNN architecture |11] could
update node and edge states in seconds, issuing alerts via automated dashboards
or direct exchange integrations. Complementary risk-scoring modules could also
consider user KYC levels, bridging behaviors, or suspicious address clusters to
prioritize threats.

These directions collectively illustrate the continued evolution of data-driven
market surveillance in decentralized finance. By converging advanced GNN
architectures, multi-chain data fusion, and real-time inference, future systems
hold potential to significantly curb pump-and-dump manipulation and foster a
healthier crypto trading environment.
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